Wetenschappelijk nieuws

Effects of mobile phone radiation on structure and functions of rat brain

 

PubMed - "A significant change in behavior, i.e., more anxiety and poor learning was shown by test animals as compared to controls and sham group. A significant change in level of antioxidant enzymes and non-enzymatic antioxidants, and increase in lipid peroxidation were observed in test rats. Histological examination showed neurodegenerative cells in hippocampal sub regions and cerebral cortex.

 

Findings indicate extensive neurodegeneration on exposure to radio waves. Increased production of reactive oxygen species due to exhaustion of enzymatic and non-enzymatic antioxidants and increased lipid peroxidation are indicating extensive neurodegeneration in selective areas of CA1, CA3, DG, and cerebral cortex. This extensive neuronal damage results in alterations in behavior related to memory and learning."

 

 

--------------------

 

Effects of mobile phone radiationon structure and functions of rat brain

 

Saikhedkar et al. Effects of mobile phone radiation (900 MHz radiofrequency) on structure and functions of rat brain. Neurol Res. 2014 May 26.

 

The goals of this study were: (1) to obtain basic information about the effects of long-term use of mobile phone on cytological makeup of the hippocampus in rat brain (2) to evaluate the effects on antioxidant status, and (3) to evaluate the effects on cognitive behavior particularly on learning and memory.

 

Rats were exposed to 900 MHz radio waves by means of a mobile hand set for 4 hours per day for 15 days. Effects on anxiety, spatial learning, and memory were studied using open field test, elevated plus maze, Morris water maze (MWM), and classic maze test. Effects on brain antioxidant status were also studied.

 

A significant change in behavior, i.e., more anxiety and poor learning was shown by test animals as compared to controls and sham group. A significant change in level of antioxidant enzymes and non-enzymatic antioxidants, and increase in lipid peroxidation were observed in test rats. Histological examination showed neurodegenerative cells in hippocampal sub regions and cerebral cortex.

 

Findings indicate extensive neurodegeneration on exposure to radio waves. Increased production of reactive oxygen species due to exhaustion of enzymatic and non-enzymatic antioxidants and increased lipid peroxidation are indicating extensive neurodegeneration in selective areas of CA1, CA3, DG, and cerebral cortex. This extensive neuronal damage results in alterations in behavior related to memory and learning.

 

http://www.ncbi.nlm.nih.gov/pubmed/24861496